[an error occurred while processing this directive]
Package-X is hosted by Hepforge, IPPP Durham

PVB

PVB[r,n1,s,m0,m1]
is the Passarino-Veltman coefficient function .

Details and OptionsDetails and Options

  • PVB[r,n1,s,m0,m1] is the symbolic form of the coefficient function multiplying the symmetrized tensor generated by LoopIntegrate.
  • PVB[r,n1,s,m0,m1] implicitly depends on the number of spacetime dimensions .
  • PVB[0,0,s,m0,m1] represents the scalar function with full dependence on .
  • PVB does not directly evaluate. LoopRefine substitutes PVB with its explicit expression.
  • The first derivative with respect to the third argument (external invariant) formats in StandardForm as PVB[0,0,s,m0,m1] .
  • PVB[r,n1,s,m0,m1,Weights{w0,w1}] represents the weighted coefficient function .
  • PVB[r,n1,s,m0,m1,Dimensionsn] represents the coefficient function in spacetime dimensions.
  • The following are equal to PVB[r,n1,s,m0,m1] in other packages:
  • FeynCalcPaVe[,{s},{,}]
    LoopToolsB0i[bb,s,,]

ExamplesExamplesopen allclose all

Basic Examples  (5)Basic Examples  (5)

Apply LoopRefine to substitute the analytic form of PVB:

In[1]:=
Click for copyable input
Out[1]=

Weighted PVB:

In[1]:=
Click for copyable input
Out[1]=

Taylor series expansion around :

In[1]:=
Click for copyable input
Out[1]=

The first derivative with respect to the external invariant may be input using ' :

In[1]:=
Click for copyable input
Out[1]=
Out[1]//FullForm=

View PVB in TraditionalForm:

In[1]:=
Click for copyable input
Out[1]//TraditionalForm=

TAdjustmentBox[E, BoxBaselineShift -> 0.5, BoxMargins -> {{-0.3, 0}, {0, 0}}]X code:

In[2]:=
Click for copyable input